Computer-BR dataset used on article "Comparing Approaches to Subjectivity Classification: A Study on Portuguese Tweets". Shared online [download].
Article link: https://link.springer.com/chapter/10.1007/978-3-319-41552-9_8
Dataset based from article "The role of text pre-processing in opinion mining on a social media language dataset" and shared online [download].
Article Link: https://ieeexplore.ieee.org/abstract/document/6984806
Sentences from Google PlayStore in portuguese, with negative and positive labels.
This dataset contains sentiment lexicons for the Portuguese language with 56,755 terms in restaurant-specific domain [download].
"excelente","0.9919043535940205","0.008095646405979519","positivo"
where
term | p_pos | p_neg | class |
---|---|---|---|
excelente | 0.991904 | 0.008096 | positivo |
agradável | 0.971788 | 0.028212 | positivo |
ruim | 0.3268206840537858 | 0.6731793159462143 | negativo |
path = 'lexicons-webmedia21.csv'
df = pd.read_csv(path)
df.head()
Please cite the following if you use the data:
Tiago de Melo. Building a Restaurant-Specific Sentiment Lexicon via Probability Theory. In: Proceedings of the Brazilian Symposium on Multimedia and the Web (WebMedia). 2021. p. 129-132. [link]
This dataset contains sentiment lexicons for the Portuguese language with 32,009 terms in 10 product domains [download].
"laptops", "fácil", "0.9801980198019802", "0.0198019801980198", "positive"
where
domain | term | p_pos | p_neg | class |
---|---|---|---|---|
laptops | fácil | 0.9801980198019802 | 0.0198019801980198 | positive |
pets | molegngo | 0.0 | 1.0 | negative |
food | saboroso | 0.9769021739130436 | 0.02309782608695652 | positive |
path = 'sentiprodbr.csv'
df = pd.read_csv(path)
df.head()
Please cite the following if you use the data:
Tiago de Melo. SentiProdBR: Building Domain-Specific Sentiment Lexicons for the Portuguese Language. In: Anais do XXXVI Simpósio Brasileiro de Bancos de Dados. 2021. p. XXX-YYY.